MODEL PAD 35-20 REGULATED DC POWER SUPPLY OPERATION MANUAL

7/./.25®

Power Requirements of this Product

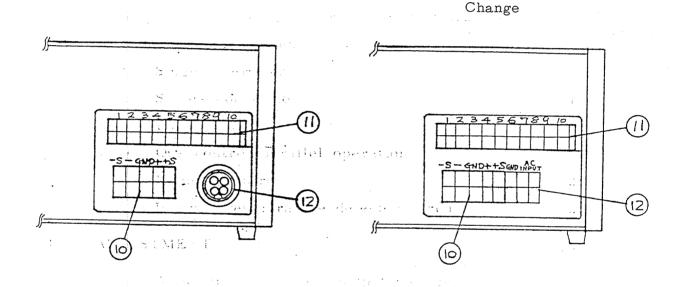
Power requirements of this product have been of Manual should be revised accordingly. (Revision should be applied to items indicated)	changed and the relevant sections of the Operation d by a check mark ☑.)			
☐ Input voltage				
The input voltage of this product is to	VAC, VAC. Use the product within this range only.			
☐ Input fuse				
The rating of this product's input fuse is	A,VAC, and			
WAI	RNING			
 To avoid electrical shock, always disconnect the AC power cable or turn off the switch on the switchboard before attempting to check or replace the fuse. 				
 Use a fuse element having a shape, rating, and characteristics suitable for this product. The use of a fuse with a different rating or one that short circuits the fuse holder may result in fire, electric shock, or irreparable damage. 				
☐ AC power cable				
The product is porvided with AC power cables described below. If the cable has no power plug attach a power plug or crimp-style terminals to the cable in accordance with the wire color specified in the drawing.				
*	RNING error plug or crimp-style terminals alified personnel.			
☐ Without a power plug	☐ Without a power plug			
Blue (NEUTRAL)	White (NEUTRAL)			
Brown (LIVE)	Black (LIVE)			
Green/Yellow (GND)	Green or Green/Yellow (GND)			
☐ Plugs for USA	☐ Plugs for Europe			
	G. C.			
Provided by Kikusui agents Kikusui agents can provide you with s For further information, contact your k				
()			

MODEL PAD35-20 TEXT CORRECTIONS

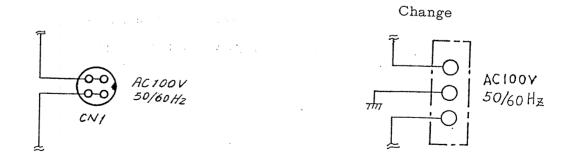
PAGE 9

12 Power supply connector Attached connector

is inserted.


Change (12) Rear terminal plate (3)

Input and GND terminals are provided on it.


PAGE 10

TO STATE OF THE ST

Fig. 3-2 Rear panel

CIRCUIT DIAGRAM

CONTENTS

			Page
1.	GENE	RAL DESCRIPTION	3
2.	SPEC	SPECIFICATION	
3.	OPER	OPERATION	
	3. 1	Front Panel Description	8
	3. 2	Precaution	10
	3. 3	How to use sampling terminals	11
	3. 4	Constant-voltage, current characteristics	13
	3. 5	Transient response	14
	3. 6	Single operation	15
	3. 7	Series connection	17
	3. 8	Parallel connection	19
	3. 9	One control parallel operation	20
	3.10	Remote control	22
	3.11	Internal temperature detector circuit	25
4.	ADJU	STMENT	26
	41	Adjustment for max. output voltage	26
	4. 2	Adjustment for max. output current	26
	4. 3	Adjustment of voltage across the	
		collector and the emitter	26

* BLOCK DIAGRAM

1. GENERAL DESCRIPTION

Kikusui Electronics' Model PAD 35-20 is an all-silicon-transistorized, highly reliable, variable regulated DC power supply which has excellent regulation, a low temperature coefficient and fast transient response. It is a universal type usable for either a digital or analog circuit. Since a pre-regulated circuit is built-in, overheating of the entire instrument is suppressed. Therefore, the instrument is compact and light-weight in comparison with the conventional instruments although it is of natural cooling type.

The output voltage is adjustable precisely and smoothly over a range of zero to 35V with a 5-turn vernier type variable resistor.

The maximum output current is 20A. Model PAD 35-20 can be used as a constant current power supply over a range of 0.5 to 20A.

Use of a new circuit technique permits the constant current characteristic to be improved largely, as compared with the conventional type.

Model PAD35-20 is a constant voltage-current automatic crossover type in which the constant output voltage performance and constant current performance are changed over automatically according to load variation.

Two lamps mounted on the front panel indicate the respective operation modes alternately (constant voltage or constant current).

Model PAD35-20 is not only used in single operation but in series, parallel or one-control paralled operation by which the voltage or current can be expanded. Use of an external resistor also permits the output voltage to be remote-controlled.

2. SPECIFICATIONS

----- V AC \pm 10%, 50/60 Hz AC input Approximately 1.6 kVA Full load 430W x 160H x 400D mm* Case Dimentions 451W x 175H x 490D mm Maximum Weight Approximately 30 kg 0~40°C Ambient temperature : Short bar (long) 1 Accessories supplied (Short) 2 Fuse 20A Operation manual 1 Output Color coded, aligned horizontally; 5 Terminals terminals on the rear panel (-sampling, -, GND, +, +sampling; Obtainable from the front and rear panels. Positive or negative Polarity ±150V maximum Floating voltage Air-cooling system By natural convection

Constant voltage characteristics;

Voltage

 $0 \sim 35V$ continuously

variable with 5-turn

variable resistor.

Current

20A

Ripple noise (5 Hz ~1 MHz)

500 µV rms

Voltage regulation (At sampling terminals)

Line regulation $0.005\% + 1\,\mathrm{mV}$ against $\pm 10\%$ variation of line voltage

Load regulation 0.005% +2mV against 0 - 100% variation of output current

Transient response $(10 \sim 100\%)$

Typical value 100 μs

Temperature coefficient

Typical value 100PPM/°C

Constant current characteristics;

Voltage

0 ~ 35V continuously

variable with 5-turn

variable resistor

Current

0.5 ~ 20A continuously

variable

Ripple noise (5Hz ~ 1MHz)

3mA rms

Current regulation

Line regulation 1mA against $\pm 10\%$ variation of line voltage Load regulation 3mA against $0 \sim 100\%$ variation of output voltage

Operation

Series operation

Parallel operation

One-control parallel operation

Output voltage remote control

Operation mode indication

LED Indication

Constant voltage C.V.

by light emission diode

Constant current C.C

Internal temperature detector circuit

When the internal temperature exceeds

75°C, this built-in circuit automatically

shuts off the output circuit.

Voltmeter

DC 35V accuracy ... 2.5% of full scale

Ammeter

DC 22A accuracy ... 2.5% of full scale

- * Two PAD35-20 can be mounted side by side on a 19" or 500 mm standard rack with rack mounting angle.
- * Overvoltage, overcurrent protector can be mounted.

3. OPERATION

3.1 Front Panel Description (See Fig. 3-1)

1) POWER switch ON/OFF switch for the input power.

Throw it upwards, and the power is on. An electromagnetic switch (breaker) is used for automatically interrupting the power supply in

case of failure.

- 2) Pilot lamp Lights when the power is on.
- 3 Constant voltage Lights when Model PAD35-20 in indicating lamp the constant voltage mode; C.V
- Constant current Lights when ModelPAD35-20 is indicating lamp in the constant current mode;
- NOLTAGE

 Knob for setting the output voltage.

 Clockwise rotation increases the output voltage.
- 6 CURRENT Knob for setting the output current.

 Clockwise rotation increases the output current.

(7) Voltmeter

indicates the output voltage.

DC 35V.

Accuracy is 2.5% of the full scale.

(8) Ammeter

Indicates the output current.

DC 22A.

Accuracy is 2.5% of the full scale.

9 Output terminals

Spaced 19 mm equally and alinged

in the following order; from the left,

-SAMPLING(white), (white), GND(black),

+(red). +SAMPLING(red).

(10) Rear terminal plate (1)

Output terminals, sampling

terminals, GND terminals are

provided on it.

(11) Rear terminal plate (2)

Remote control terminal and one-

control paralled operation terminals

are provided on it.

(12) Power supply connector

Attached connector is inserted.

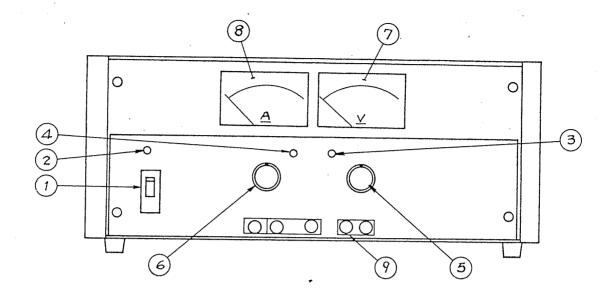


Fig. 3-1 Front Panel

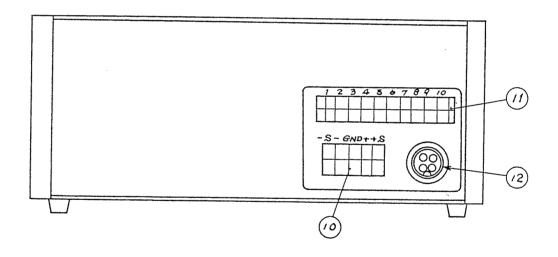


Fig. 3-2 Rear Panel

3.2 Precaution

AC input

AC input for Model PA \boldsymbol{b} 35-20 should be within a range of

---- V AC \pm 10%, 48 \sim 62 Hz.

Installation

Avoid using Model PAD35-20 at a place exposed to heat; where the ambient temperature exceeds a range of zero to 40°C; that is humid or dusty; where it is not be level.

During operation, don't lay Model PAD35-20 on its side nor put anything on it. Otherwise, a fault may be caused by reduction of its rediation effect.

Variable knob output voltage

The vernier type variable resistor for adjusting the output voltage of Model PAD35-20 is endless. When rotated more than five turns, its motion will become considerably rough. This shows the ultimate position of electrical variation.

Output voltage overshoot

Voltage between output terminals never exceeds the preset value when the power is turned on or off.

3.3 How to use sampling terminals

When Model PAD35-20 is far from the load, a long lead connecting the output terminals and the load causes load

regulation to be deteriorated because of voltage drop due to lead resistance.

The sampling terminals serve to solve this trouble. For the connection diagram, see Fig. 3-3.

- Disconnect the short bars from -SAMPLING, and +, and + SAMPLING terminals on the front panel.
 Remove the jumpers between -S, and +, and +S terminals on the rear terminal board (1).
- 2. Connect the output terminals on the rear or front panel to the load. Connect the sampling terminals and the nearest load terminals with other leads.

Match the polarity of the sampling terminals to that of the output terminals.

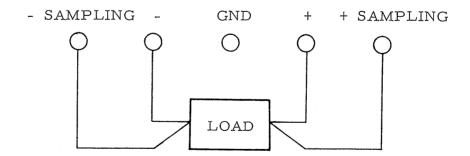


Fig. 3-3

Note 1 Deterioration of load regulation is calculated by the following formula;

 $Vd = Io \times R (m\Omega)$

where

Io (A) = Load current, R (m Ω) = lead resistance Vd = Voltage drop

- Note 2 Use two-conductor shielded wire for sampling to avoid induction causing ripple from outside.

 Check the sampling leads for proper polarity.
- Note 3 Be careful since the lead connected to the load affects the preset constant current value due to its resistance.
- Note 4 As long sampling leads tend to cause oscillation, connect electroly condenser with a capacitance of a few "F's and a dielectric strength of 50 V to sampling terminals in the proper polarity.
- Note 5 Sampling is impossible if voltage drop of the lead connected to the load is 0.3V or more.
- 3.4 Constant-voltage, current characteristics

The working output characteristic of Model PAD35-20, called constant-voltage/constant-current automatic crossover type,

permits continuous transition from constant-current to constant-voltage operation mode in response to the load change

The intersection of constant-voltage and constant-current operation modes is called crossover point. Fig. 3-4 shows the relationship between this point and the load.

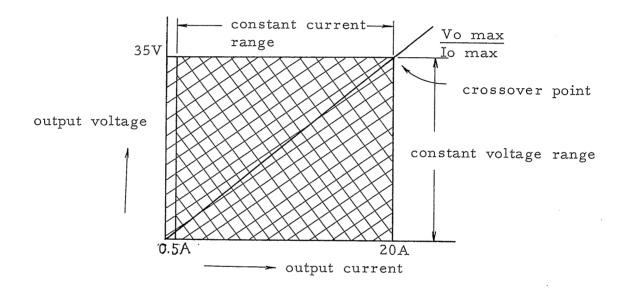


Fig. 3-4

The operation modes of PAD35-20 are indicated by the area with oblique lines.

Operation is possible anywhere within this area.

3.5 Transient response

Designed to meet a transient response quickly enough, PAD35-20

can be used for digital or other circuits involving a drastic load variation and in which performance is affected by a transient variation. But this is the characteristic at the output terminals, and if a long lead is extended to the load, then influence of the inductance is not negligible.

In such a case, use capacitors to cancel the inductance.

3.6 Single operation

Constant voltage performance

- 1) Connect the power cord. Throw the power switch upwards, and Model PAD35-20 is ready to operate immediately, lighting the pilot lamp simultaneously.
- 2) Turn CURRENT knob fully clockwise. Turn VOLTAGE knob until the desired voltage is obtained. (Clockwise rotation increases the output voltage.)
- 3) Connect the output terminals to the load.

Note: When requiring limiting the load current to a certain value, Before the load connect, short the output terminals. Set "CURRENT" knob to the desired current value.

Constant current performance

1) The same as Paragraph (1) in "Constnat voltage performance"

above.

- 2) Turn "VOLTAGE" knob clockwise until its motion becomes slighly rough. (This implies the maximum output voltage.)
- 3) Short the output terminals. Turn "CURRENT" knob until the desired current value is obtained. (Clockwise rotation increases the output current.)
- 4) The same as Paragraph 3) in "Constant voltage performance" above.
- Note 1 Model PAD35-20 is a constant voltage-current automatic crossover type. When the load current is smaller, the constant current mode is changed over to the constant voltage mode at a specific voltage.

 Thus, when requiring limiting the output voltage to a certain value, preset the output voltage to the desired value.
- Note 2 The constant voltage or constant current mode is indicated by the respective lamps on the front panel alternately.

Constant current mode lamp C.C

Constant voltage mode lamp C.V

Note 3 For use of the sampling terminals, see Note 3 in Chaper 3. # "How to use sampling terminals".

3.7 Series Connection

A higher output voltage than 35 V can be obtained by connecting two Model PAD35-20s in series.

- Note 1 Be careful not to ground the positive terminal of one Model PAD35-20 when grounding the negative terminal of the other in Fig. 3-5.
- Note 2 The voltage at each output terminal should not exceed the floating voltage.
- Note 3 Avoid the series connection with other model.

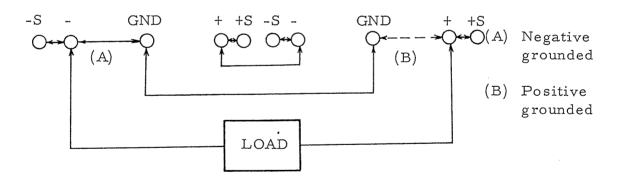


Fig. 3-5 Series connection diagram

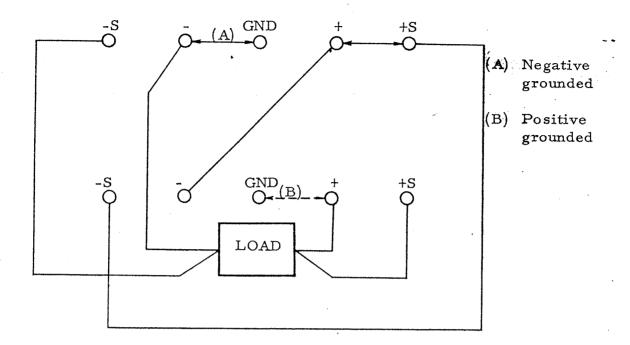
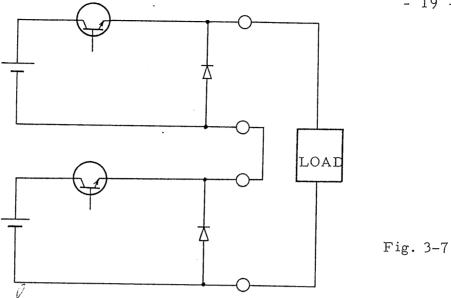



Fig. 3-6 Sampling terminal connection diagram in series connection

When two Model PAD35-20 connected in series are overloaded, one Model PAD35-20, which has been changed over to the constant current mode first, would be supplied with the output voltage of the other inversely.

This would damage series transistors of the former.

To avoid this trouble, a diode is connected between the output terminals of each Model PAD35-20, as shown in Fig. 3-7. Patent pending No. 308280.....

3.8 Paralled Connection

When a larger current than 20A is required, connect the output terminals of two Model PAD35-20 in parallel.

- Set the output voltages of the two Model PAD35-20 in 1) parallel connection at values as close as possible each other since a setting difference between the two would cause load fluctuation.
- 2) Turn "CURRENT" knobs fully clockwise.
- 3) Connect the output terminals of two Model PAD35-20 to the load so that their polarity matches.

The grounding polarity of both should also match.

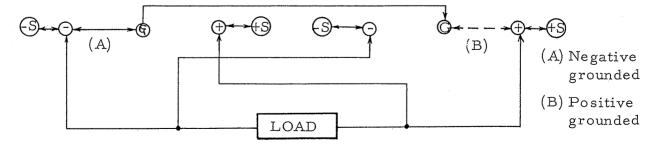


Fig. 3-8 Parallel connection diagram

Voltage-current characteristics in parallel connection

As the voltage-current characteristics in parallel connection in Fig. 3-9 show the output voltage in parallel operation remains constant until one Model PAD35-20 with a higher output voltage is overloaded. When one Model PAD35-20 is changed over to the constant current mode, the output voltage decreases until it reaches the value preset by the other Model PAD35-20, whose output terminals are changed over from an inverse voltage condition to a normal one, causing the constant voltage mode. Thus, load fluctuation causes the output voltage to fluctuate by the preset output voltage difference ΔV between the two units, and ripple characteristics are reduced.

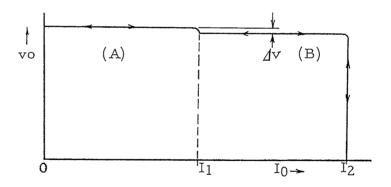


Fig. 3-9 Characteristics diagram

3.9 One-control parallel operation

When a larger current than 20A is required, one-control parallel operation of two Model PAD 35-20 is preferable since the

characteristics are improved largely, as compared with those in parallel connection.

In one-control parallel operation, one of the Model PAD35-20 operates as the master unit, by which the output voltage is adjusted, and the other as the slave whose output voltage is controlled by the master unit.

- 1) Connect the terminals on the rear panel of the master to the slave and the load as shown in Fig. 3-10.
- 2) Pick up the output at the output terminals on the rear panel of the master. When turning on the power or output switches of the master and slave, start with the master.

When turning them off, start with the slave.

- Note 1 Picking up the output on the output terminals on the front panel of the master causes load regulation to be deteriorated somewhat, and current unbalance occurs between the master and slave.
- Note 2 To prevent load regulation from increase, use the sampling terminals. (Connection is showed Fig. 3-11)
- Note 3 Turn "VOLTAGE, CURRENT" knob of the slave fully clockwise.

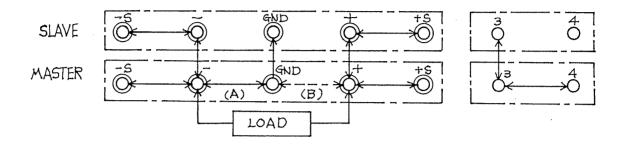


Fig. 3-10 One-control parallel operation master, slave, load

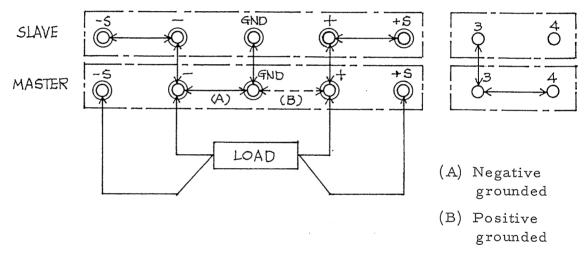


Fig. 3-11 Using sampling terminal in one-control parallel operation

3.10 Remote control

To vary output voltage by remote control, improve efficiency in varying output voltage and obtain the preset output voltages simply by operation of switches or others, use the remote control terminals on the rear panel.

1) Turn off power switch and remove jumpers from

terminals (1) and (2) on the rear panel.

- 2) Provide a suitable variable element between 1 and -S

 Note Variable element will be described in detail later.
- 3) Turn on power switch and then output voltage will vary according to the characteristic of the variable element connected.

Note If the line connected to variable element is open, output voltage cannot be controlled, and excessive output voltage is detected. Make the connection with power switched off.

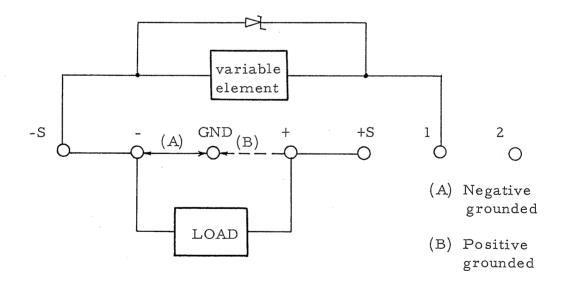


Fig. 3-12

3.10-1 To vary output voltage by remote control.

Output voltage varies at a rate of approximately 3.5 V/k ohms with reference to the resistance of the resistor connected. Therefore,

output voltage Vo(V) = Voltage variation rate 3.5V/k ohms x Rr (k ohms)

where voltage variation rate indicates voltage change for each 1 k ohms, and Rr the resistance (k ohms) for remote control.

If no suitable resistor is available and output Vo may exceed the rated output or it is desired to fix voltage at a certain level, output voltage can be limited by connecting zener diode with a small leakage current to the resistor.

(See Fig. 3-12)

Note Use a wire wound type variable resistor with a low temperature coefficient or a metal-film one, and the power rating of such a resistor must be at least 0.5W more over.

Otherwise, the temperature drift of output voltage may deteriorate.

Note PAD35-20 can operate steadily if the external lines connected are limited to approximately 2m.

If longer lines are used, output voltage may become unstable.

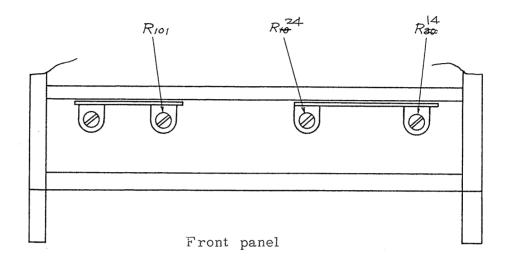
3.10-2 To improve efficiency in varying output voltage (to finely adjust voltage).

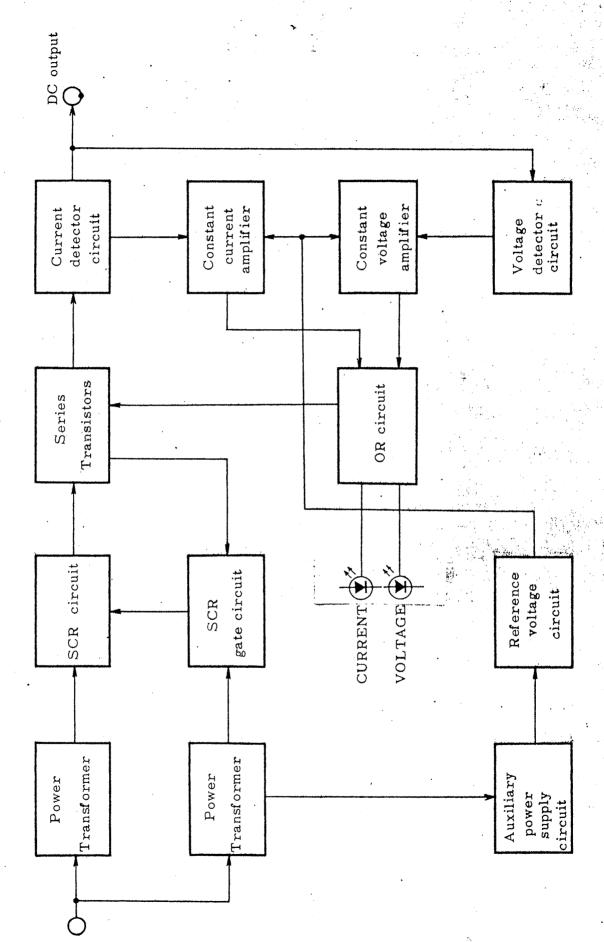
As already mentioned, output voltage is proportional to the external resistance.

Letting Vres stand for the required efficiency, the efficiency of the resistor can be formulated as follows.

Rres =
$$\frac{\text{Vres}}{\text{Voltage variation rate 3.5V/k ohms}}$$
 (k ohms)

3.11 Internal temperature detector circuit


When the internal temperature exceeds 75°C, the built-in circuit automatically shuts off the output circuit.


Therefore, if this instrument is used in a place where the ambient temperature is over 40°C, or used by mounting it on another instrument, the entire output or current may not be obtained. Since this circuit is restored to its original condition soon after the internal temperature lowers below the specific value, turn off the power switch, and cool the instrument if the output cannot be obtained as specified while the circuits operate normally.

4. ADJUSTING PROCEDURE

- 4.1 Adjustment of maximum output voltage
 - l) Turn VOLTAGE knob to clockwise over 5 turns.
 - 2) Turn on OUTPUT switch, and connects a voltmeter having an accuracy of over 0.5% to the output terminal.
 - 3) Adjust semi-fixed resistor RIO on PCB A-001A until the output voltage becomes 37V.
- 4.2 Adjustment of maximum output current
 - 1) Turn VOLTAGE knob fully counterclockwise.
 - 2) Turn CURRENT knob fully clockwise.
 - 3) Connect an ammeter having an accuracy of over 0.5% to the output terminals, and slowly increase the voltage by turning VOLTAGE knob.
 - 4) Turn semi-fixed resistor R14 on PCB A-001A until the output current becomes 20.5A
- 4.3 Adjustment of voltage across the collector and the emitter of series transistors
 - 1) Turn the CURRENT knob until the output current becomes 20A under the 4.2 condition.
 - 2) Adjust the semi-fixed resistor R101 on PCB A-004 A until the

collector voltage of the series transistors Q8 \sim Q15 becomes 7V under this condition.

z Fig. 4-1 Block diagram